Ingenieurbüro für Umwelttechnik P. Hasse

Am Störtal 01 19063 Schwerin

Tel. 0385/ 2180040 Fax 0385/ 2180140

Immissionsprognose - Lärm

für das Vorhaben

Bebauungsplan Nr. 2 "Am Berg" der Gemeinde Passow

Landkreis Ludwigslust - Parchim

Auftraggeber:

Felix Just

Kurze Straße 1b

19386 Passow OT Weisin

Bearbeiter:

Dipl.-Ing. Peter Hasse

Beratender Ingenieur

Der Bericht besteht aus 8 Seiten und 5 Anlagen

Schwerin, den 9. Januar 2019

Inhaltsverzeichnis:

1. Einleitung und Problemstellung	. 3
2. Standortverhältnisse	. 3
2.1 Erläuterungen zum Betrachtungsgebiet 2.2 Wesentliche Lärmquellen	
3. Ergebnisse der schalltechnischen Berechnungen	. 4
3.1 Beurteilungspegel an den Immissionspunkten	. 4
4. Vorschlag für die Festsetzung im Bebauungsplan	. 5
5. Qualität der Prognose	. 7
6. Zusammenfassung	. 7

Verzeichnis der Anlagen

Anlage 1	Ubersichtsplan Maßstab 1 : 10.000
Anlage 2	Auszug aus dem Rechenmodell
Anlage 3	Angaben zum Betrachtungsgebiet sowie zur Nutzung
Anlage 4	Ergebnisse der schalltechnischen Berechnungen
Anlage 5	Verzeichnis Normen, Vorschriften und Literatur

1. Einleitung und Problemstellung

Im Rahmen des Verfahrens zur Aufstellung des Bebauungsplanes Nr. 2 "Am Berg" der Gemeinde Passow soll die Lärmsituation untersucht werden, die sich für die Entwicklung der vorgesehenen Fläche, unter Beachtung der Vorbelastung an diesem Standort, ergibt. Die Beurteilung erfolgt nach den jeweiligen Orientierungswerten der DIN18005.

Am Standort sind, entsprechend dem vorgegebenen Aufgabenrahmen für das Betrachtungsgebiet, folgende Bedingungen vorhanden:

- Für die Wohnbauflächen sind die Orientierungswerte gemäß Beiblatt zur DIN 18005, Teil 1, Pkt. 1.1 /5/,
 - b) bei allgemeinen Wohngebieten (WA), Kleinsiedlungsgebieten (WS) ...

tags

55 dB(A)

nachts

45 dB bzw. 40 dB(A)1

einzuhalten.

Die Beurteilungspegel der Geräusche verschiedener Schallquellen (Schienen- und Straßenverkehr) sollen wegen der unterschiedlichen Einstellung der Betroffenen zu den verschiedenen Geräuschquellen jeweils für sich allein mit den Orientierungswerten verglichen werden. Zur Bemessung des passiven Schallschutzes in den Gebäuden werden aus den Beurteilungspegeln der relevanten Quellen die Lärmpegelbereiche (LPB) gebildet.

2. Standortverhältnisse

2.1 Erläuterungen zum Betrachtungsgebiet

Zur weiteren Erläuterung des Vorhabens siehe:

Anlage 1

Übersichtsplan Maßstab 1:10.000

Anlage 2

Auszug aus dem Rechenmodell

sowie

Anlage 3

Angaben zum Betrachtungsgebiet sowie zur Nutzung

Das Betrachtungsgebiet beinhaltet den Geltungsbereich des B-Planes mit landwirtschaftlich genutzte Flächen und die angrenzende Bebauung und mit Wohngebäuden und Nutzgärten.

2.2 Wesentliche Lärmquellen

Folgende Quellen sind vorhanden:

Straßenverkehr - Landestraße L17 mit der Ortsdurchfahrt (Lübzer Straße)

Schienenverkehr - Strecke 6935, Abschnitt Passow (Parchim - Waren)

Für den Verkehrslärm "Straße" wird das Prognosejahr 2020/2025 zugrunde gelegt. Für den Verkehrslärm "Schiene" liegen keine aktuellen Verkehrszahlen vor. Die Aussagen zur Lärmbelastung für den Schienenverkehr erfolgen aus Basis einer Schätzung (siehe hierzu Anlage 3, Punkt 2.2).

Der Gewerbelärm ist für das Betrachtungsgebiet unwesentlich und wird im Rahmen dieser Betrachtung nicht berücksichtigt.

3. Ergebnisse der schalltechnischen Berechnungen

Die Ergebnisse aus den schalltechnischen Berechnungen, gemäß Anlage 4, beschreiben die Geräusche an den Immissionspunkten bei den vorgegebenen Plansituationen (siehe Anlage 2 und 3).

Die Berechnung der Beurteilungspegel erfolgt mit dem Rechenprogramm IMMI 2018 der Fa. "Wölfel Meßsysteme – Software GmbH+Co. KG", unter Berücksichtigung aller dargestellten Geräuschquellen nach den Richtlinien RLS 90 /9/ (Straßenverkehr) und der neuen Schall 03 /11/ (Schienenverkehr) für die Immissionspunkte sowie als Raster zur Darstellung der Isoflächen der Lärmpegelbereiche.

3.1 Beurteilungspegel an den Immissionspunkten

Für die Beurteilung der Geräusche werden die Beurteilungspegel der verschiedenen Schallquellen mit den Orientierungswerten verglichen.

¹ Bei zwei angegebenen Nachtwerten soll der niedrigere für Industrie-, Gewerbe- und Freizeitlärm ... gelten.

3.1.1 Verkehrslärm -

Schienenverkehr – Strecken 6935

Für den Tag werden die Orientierungswerte an den gewählten Immissionspunkte IO1 und IO2 für das Erdgeschoß sowie das Obergeschoß mit bis zu 1,53 dB überschritten. Für die Nacht werden die Orientierungswerte an keinem der gewählten Immissionspunkte überschritten.

- Straßenverkehr Prognose 2020/2025

Für den Tag und die Nacht werden die Orientierungswerte an keinem der gewählten Immissionspunkte überschritten.

3.2 Lärmpegelbereiche

Der maßgebliche Außenlärm wird aus den berechneten Beurteilungspegeln ermittelt. Daraus werden dann nach DIN 4109-2 die Lärmpegelbereiche bestimmt. Der Geltungsbereich des B-Planes liegt in den Lärmpegelbereichen LPB I bis LPB III. Die Lärmpegelbereiche werden für die im Geltungsbereich unbebaute Fläche als Raster der Isoflächen dargestellt (siehe Anlage 4; Punkt 4). Für die Festsetzung zum passiven Schallschutz sollte der Verlauf der Isolienen in der Höhe von 6,3 m über OKG verwendet werden.

4. Vorschlag für die Festsetzung im Bebauungsplan

In der Planzeichnung sind die Grenzen der einzelnen Teilflächen auszuweisen. Für die textliche Festsetzung wird folgender Text vorgeschlagen:

X. Lärmschutzmaßnahmen

(gemäß § 9, Abs. 1, Nr. 24 BauGB und den Anforderungen an die Betriebseigenschaften nach § 1 Abs. (4) BauNVO)

- X.1 Im Geltungsbereich des Bebauungsplanes sind die L\u00e4rmpegelbereiche LPB I bis III, wie in der Planzeichnung dargestellt, zu ber\u00fccksichtigen
- X.2 Im Sinne der L\u00e4rmvorsorge ist beim Neubau bzw. bei baulichen \u00e4nderungen in den gekennzeichneten Bereichen, an allen Geb\u00e4udeteilen von

schutzbedürftigen Räumen, die Forderung an die Luftschalldämmung von Außenbauteilen einzuhalten (DIN 4109-1:2016-07, Tab. 7 - Auszug).

		Maßgeblicher	Raumart					
Zeile	Lärmpegel- bereich	Außenlärmpegel	Aufenthaltsräume in Wohnungen, und ähnliches	Büroräume ² und ähnliches				
	dB(A)		erf. R'w,res des Außenbauteiles in dB					
1	1	bis 55	30	-				
2	II	56 bis 60	30	30				
3	III	61 bis 65	35	30				
4	IV	66 bis 70	40	35				
			•••					

Die erforderlichen gesamt bewerteten Bau-Schalldämm-Maße sind in Abhängigkeit vom Verhältnis der gesamten Außenfläche des Raumes Ss zur Grundfläche des Raumes Sg nach DIN 4109-2:2016-07, Gleichung 33 mit dem Korrekturwert K_{AL} zu korrigieren.

- X.3 Die Schlafräume und Räume mit ähnlicher Nutzung sind ab Lärmpegelbereich LPB III mit schalldämmenden Lüftungsöffnungen zu versehen, die die Einhaltung der erforderlichen resultierenden Luftschalldämmung (R'_{W, res}) des gesamten Außenwandbauteiles gewährleisten.
- X.4 Die erforderliche resultierende Luftschalldämmung (R'w, res) gilt für die gesamten Außenbauteile eines Raumes d.h., auch für Dachflächen.
- X.5 Von den im Plan dargestellten Lärmpegelbereichen kann im Sonderfall abgewichen werden, wenn durch schalltechnischen Einzelnachweis gemäß der VDI 2719 (Tabelle 6) die Einhaltung der Innenschallpegel in Schlafräumen (nachts 30 dB) und in Wohnräumen (nachts 35 dB) nachgewiesen werden kann.

² An Außenbauteile von Räumen, bei denen der eindringende Außenlärm aufgrund der in den Räumen ausgeübten Tätigkeiten nur einen untergeordneten Beitrag zum Innenraumpegel leistet, werden keine Forderungen gestellt.

X.6 Innerhalb des Wohngebietes ist der Betrieb von Klimaanlagen, Kühlgeräten, Lüftungsgeräten und Luft-Wasserwärmepumpen nur zulässig, wenn gewährleistet ist, dass die folgenden Abstände zu maßgeblichen Immissionsorten eingehalten werden.

Schallleistungspegel nach Herstellerangabe in dB(A)		39	42	45	48	51	54	57	6 O
Abstand in m	0,1	0,5	0,9	1,4	2,2	3,4	5,2	7,6	10,9

Andere immissionsschutzrechtliche Vorschriften bleiben von dieser Regelung unberührt.

5. Qualität der Prognose

Die Qualität der Ergebnisse ist in erster Linie abhängig von der Genauigkeit der Emissionsdaten (Schallleistungspegel, Einwirkdauer und Richtwirkung). Für die Lärmquelle "Straßenverkehr" werden die vorliegenden öffentlich zugänglichen Verkehrszahlen (Verkehrsmengenkarte 2015), entsprechend der bestehenden Richtlinien verwendet.

Für die Lärmquelle Schienenverkehr liegen keine Verkehrszahlen vor. Es wurde auf Basis alter Verkehrszahlen (Fahrplan 2014) eine konservative Schätzung der Verkehrszahlen für die Prognose vorgenommen. Die Berechnung erfolgte entsprechend der bestehenden Richtlinien.

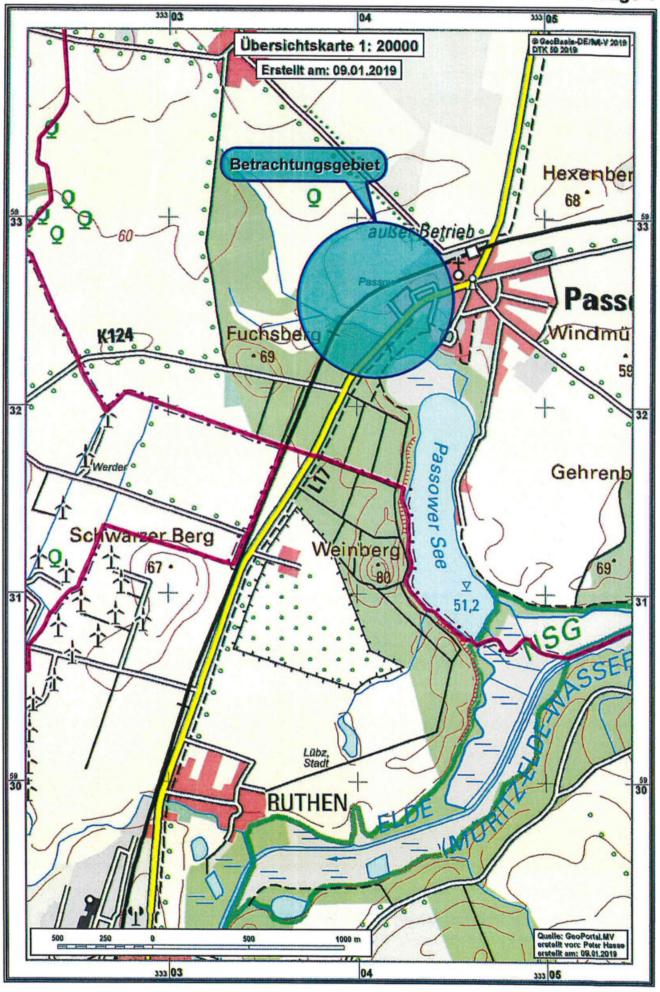
Das Berechnungsprogramm IMMI 2018 folgt bei der Ausbreitungsrechnung dem Stand der Technik (DIN ISO 9613-2) und entspricht der dort genannten Genauigkeit. Die Genauigkeit liegt dabei im Nahbereich (bis 100m) bei ±1dB und im weiteren Abstand (100m bis 1000m) bei ±3dB.

6. Zusammenfassung

Entsprechend dem Dargestellten ist eine Nutzung im Geltungsbereich des Bebauungsplanes wie folgt möglich:

In den Bebauungsplänen sollte die Festsetzung (nach § 9 Abs. 1 Nr. 24)
 aufgenommen werden, dass passive Schallschutzmaßnahmen vorzusehen sind.
 Dabei sollen sowohl entwurfstechnische sowie bautechnische Maßnahmen für den

Schallschutz der schutzbedürftigen Räume innerhalb des B-Plangebietes angewendet werden.


Die Notwendigkeit dieses Verfahrensweges kann unter anderem damit begründet werden, dass hier die Ausgangsbedingungen nicht planerisch im Rahmen des Verfahrens zum Bebauungsplan beeinflusst werden können.

- Dafür ist das Planungsgebiet entsprechend der prognostizierten Lärmpegelbereiche nach DIN 4109 gegliedert (siehe Anlage 4, Punkt 3).
- Der vorhandenen Lärmbelastung wird im Rahmen der Festsetzung der Lärmpegelbereiche Rechnung getragen. Damit ist es möglich bei der Festlegung bzw. Auswahl der Außenbauteile, bei der funktionellen Gestaltung der Grundrisse und ggf. auch der Gebäudehöhe den Schutz gegen Außenlärm zu berücksichtigen.
- Zum Schutz gegen Außenlärm sind die betroffenen Gebäudeteile entsprechend der Lärmpegelbereiche zu bemessen (Bemessung der Außenbauteile nach DIN 4109-1 und DIN 4109-2).

Unter Beachtung der oben genannten Ausführungen, den in den Anlagen 3 und 4 dargestellten Ausgangsparametern ist bei der geplanten Bebauung mit keiner unzulässigen Lärmbelastung zu rechnen.

Schwerin, den 9. Januar 2019

Beratender Ingenieu

Vorhaben: Bebauungsplan Nr. 2 "Am Berg" der Gemeinde Passow

Standort: Landkreis Ludwigslust – Parchim

Auszug aus dem Rechenmodell

Inhaltsübersicht

Berechnungseinstellungen

ergleich von Berechnungseinstellungen Referenzeinstellung			Referenzeinstellung:	Referenzeinstellung: Schall 03		
Rechenmodell	Punktberechnung	Rasterberechnung	Punktberechnung	Rasterberechnung		
Gleitende Anpassung des Erhebungsgebietes an die Lage des IP	PKT					
L/m						
Geländekanten als Hindernisse	Ja	Ja	Ja	Ja		
Verbesserte Interpolation in den Randbereichen	Ja	Ja	Ja	Ja		
Freifeld vor Reflexionsflächen /m						
für Quellen	1.0	1.0	1.0	1.0		
für Immissionspunkte	1.0	1.0	1.0	1.0		
Haus; weißer Rand bei Raster	Nein	Nein	Nein	Nein		
Zwischenausgaben	Keine	Keine	Keine .	Keine		
Art der Einstellung	Referenzeinstellung	Referenzeinstellung	Referenzeinstellung	Referenzeinstellung		
Reichweite von Quellen begrenzen:						
* Suchradius /m (Abstand Quelle-IP) begrenzen:	Nein	Nein	Nein	Nein		
* Mindest-Pegelabstand /dB:	Nein	Nein	Nein	Nein		
Projektion von Linienquellen	Ja	Ja	Ja	Ja		
Projektion von Flächenquellen	Ja	Ja	Ja	Ja		
Beschränkung der Projektion	Nein	Nein	Nein	Nein		
* Radius/m um Quelle herum:				1		
* Radius/m um IP herum:						
Mindestlänge für Teilstücke /m	1.0	1.0	1.0	1.0		
Variable MinLänge für Teilstücke;				1,0		
* in Prozent des Abstandes IP-Quelle	Nein	Nein	Nein	Nein		
Zus, Faktor für Abstandskriterium	1.0	1.0	1.0	1,0		
Einfügungsdämpfung abweichend von Regelwerk:	Nein	Nein	Nein	Nein		
* Einfügungsdämpfung begrenzen:				14001		
* Grenzwert /dB für Einfachbeugung:						
* Grenzwert /dB für Mehrfachbeugung:						
Berechnung der Abschirmung bei VDI 2720, ISO9613						
* Seitlicher Umweg	Ja	Ja	Ja	Ja		
* Seitlicher Umweg bei Spiegelquellen	Nein	Nein	Nein	Nein		
			Trout -	140111		
Reflexion						
Reflexion (max. Ordnung)	1	1	3	3		
Suchradius /m (Abstand Quelle-IP) begrenzen:	Nein	Nein	Nein	Nein		
* Suchradius /m	117	Titolii .	reali	Idelli		
Reichweite von Refl.Flächen begrenzen:				_		
* Radius um Quelle oder IP /m:	Nein	Nein	Nein	Male		
Mindest-Pegelabstand /dB;	Nein	Nein	Nein	Nein		
Spiegelquellen durch Projektion	Ja	Ja		Nein		
Keine Refl. bei vollständiger Abschirmung	Ja	Ja Ja	Ja Ja	Ja Ja		
	1,324	1.134				

Nein	Nein	Ja	Ja
		1,00	1,00
		1,00	1,00
		10,00	1 0,00
u.		Nein	Nein
Ja	Ja	Ja	Ja
Nein	Nein	Nein	Nein
Nein	Nein	Nein	Nein
0.1	0.1	0.1	0.1
Nein	Nein	Nein	Nein
	Ja Nein Nein 0.1	Ja Ja Nein Nein Nein O.1 O.1	Ja Ja Ja Nein Nein Nein Nein 0.1 0.1 0.1

Globale Parameter		zeinstellung	F	tefere nzeinstellun	g: Schall 03	
Voreinstellung von G außerhalb von DBOD-Elementen	0,00					
Temperatur /*		10				
relative Feuchte /%						
Wohnfläche pro Einw. /m² (=0.8*Brutto)	40,00			40.		
Mittlere Stockwerkshöhe in m	2,80			2,80		
Pauschale Meteorologie (Directive 2002/49/EC);	Tag	Abend	Nacht	Tag Abend Na		
Pauschale Meteorologie (Directive 2002/49/EC):	2,00	1,00	0,00	2,00	1,00	0,00

Parameter der Bibliothek: RLS-90	Referenzeinstellung	Referenzeinstellung: Schall 03
Reflexionskriterium nach Abschnitt 4.6: hR >= 0.3*SQRT(aR)	Nein	Nein
Berücksichtigt Bewuchs-Elemente	Nein	Nein
Berücksichtigt Bebauungs-Elemente	Nein	Nein
Berücksichtigt Boden-Elemente	Nein	Nein

Parameter der Bibliothek: Schall 03	Referenzeinstellung	Referenzeinstellung: Schall 03
Eingabe von Zugzahlen	pro Stunde	pro Stunde
Berücksichtigt Bewuchs-Elemente	Nein	Nein
Berücksichtigt Bebauungs-Elemente	Nein	Nein
Berücksichtigt Boden-Elemente	Ja	Ja
Schienenbonus für Züge	Nein	Nein
Schlenenbonus für Straßenbahnen	Nein	Nein

Vorhaben: Bebauungsplan Nr. 2 "Am Berg" der Gemeinde Passow

Standort: Landkreis Ludwigslust - Parchim

Angaben zum Betrachtungsgebiet sowie zur Nutzung

Inhaltverzeichnis

Beschreibung von Nutzung und Bauweise	2
1.1 Gliederung des Geltungsbereichs nach § 4 BauNVO	2
1.2 Infrastruktur – Verkehr	2
2. Angaben zu den Lärmquellen / Übersicht	2
2.1 Straßenverkehr	4
2.2 Schienenverkehr	5
3. Angaben zu den Immissionspunkten	6
4. Angaben zur Schallausbreitung	6
5. Höhenprofil	7

1. Beschreibung von Nutzung und Bauweise

1.1 Gliederung des Geltungsbereichs nach § 4 BauNVO

Der Bebauungsplan Nr. 2 "Am Berg" der Gemeinde Passow umfasst eine Fläche von ~ 1,6 ha, die sich zwischen dem nordwestlichen Ortsrand der vorhandenen örtlichen Wohnbebauung und der Gleisanlage der DB AG befindet. Diese Fläche wurde bisher landwirtschaftlich genutzt.

Der Geltungsbereich des B-Planes wird wie folgt begrenzt:

- im Norden

durch die Bahnstrecke (DB Strecken Nr. 6935) Parchim -

Waren

- im Westen

durch landwirtschaftliche Nutzflächen

im Süden und Osten

durch die vorhandene Wohnbebauung des Ortes.

Es ist eine offene Bebauung durch Einzelhäuser mit maximal zwei Nutzungsebenen (Erdgeschoß und 1. Obergeschoß bzw. ausgebautes Dachgeschoß) vorgesehen.

Als wesentliche Lärmquellen sind folgende vorhanden und ggf. zu berücksichtigen:

Straßenverkehr

Landestraße L17 mit der Ortsdurchfahrt (Lübzer Straße)

Schienenverkehr

Strecke 6935, Abschnitt Passow (Parchim - Waren)

Gewerbe

1 Autowerkstatt an der Lübzer Straße 73

2 BMT Baumaschinen- und Technikhandel, Am Schloß 69

3 Autohandel / Gebrauchtwagen an der Bahnhofstraße

Die Gewerbebetriebe 1 und 2 befinden sich innerhalb der örtlichen Wohnbebauung und der Autohandel befindet sich nördlich der Gleisanlagen. Für alle Betriebe gilt, dass in der Nacht nicht gearbeitet wird.

Nach eigener Erhebung sind auch tags im Bereich der Bebauungsplanfläche keine Lärmbelastungen erkennbar. Der Gewerbelärm wird im Rahmen dieser Betrachtung deshalb nicht weiter berücksichtigt.

1.2 Infrastruktur - Verkehr

Die Verkehrsanbindung der B-Planfläche erfolgt über die Anliegerstraßen "Am Berg" und Ringstraße. Die Straßen sowie die Stellplätze auf den Wohngrundstücken im Geltungsbereich des B-Planes sowie der unmittelbar benachbarten Wohnnutzungen bleiben als Nutzung der Anlieger bei den Berechnungen unberücksichtigt.

2. Angaben zu den Lärmquellen / Übersicht

Die Quellenbezeichnung erfolgt mit dem Quellentyp und einer fortlaufenden Nummer. Als Linienquellen für die Straße STRb00x und für den Schienenverkehr mit S03Z00x in den Datenblättern zur Ausbreitungsrechnung und dem Übersichtsplan.

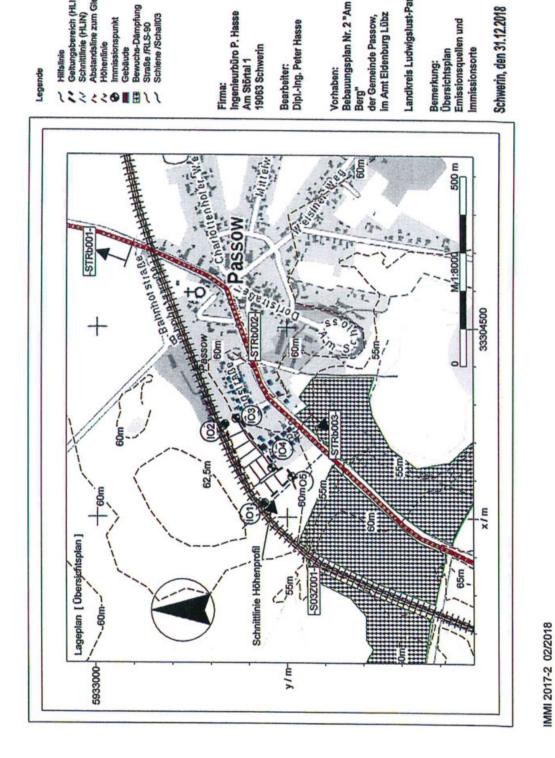


Bild 1 - Übersichtsplan Emissionsquellen und Immissionsorte

2.1 Straßenverkehr

Die Berechnung der Verkehrsstärke auf den Landesstraßen wird auf Grundlage der Verkehrsmengenkarte 2015 durchgeführt:

Projektbezog	ene (Prognose	efaktor) Verkel	hrsbelastung	_					
L17 / 205	Verkehrsmen	rkehrsmengenkarte 2015							
Jahr	LPF	RMF	PPF	Zählwerte	M	Kfz/h	P ₂₄	PT	PN
2015 KFZ tag	1,000			3.868,0	0,060	232,1			
nachts					0,008	30,9			
2015 SV tags	1,000			175,0			4,52		
nachts									
2020 KFZ ta	1,050	1,100	1,155	4.467,5	0,060	268,1			
nachts					0,008	35,7			
2020 SV tags	1,025	1,100	1,128	197,3			4,42	4,55	2,30
nachts			2000					.,	2,00

Für die prognostizierte Verkehrsbelastung im Jahr 2025 erfolgt die Berechnung in Anlehnung an die Prognosefaktoren im Straßennetz M-V. Die Prognosezahlen für das Jahr 2020 gelten auch weiter für das Jahr 2025.

Daraus ergeben sich für die einzelnen Straßenabschnitte folgende Quellenparameter:

Quelle LfdNr.	Bezeichnung	DTV	V _{zulässig} PKW	V _{zulässig} LKW	p _T in % Anteil LKW	p _N in % Anteil LKW
STRb001	L 17 / 1	4.468	100	80	10	5
STRb002	L 17/2	4.468	50	50	10	5
STRb003	L 17/3	4.468	80	80	10	5

Der LKW Anteil am Verkehrsaufkommen wurde als mittlerer Wert zwischen den vorliegenden Zählwerten und dem Normwert der RLS 90 für Landes- und Kreisstraßen gewählt.

2.2 Schienenverkehr

Züge (S03Z001 Schiene

Zur Bahnstrecken 6935 Parchim -Waren ist folgendes zu verzeichnen:

- Die Strecke ist nicht stillgelegt d. h, sie ist jederzeit nach vorheriger Trassenanmeldung von Reise- und Güterzügen zu befahren.
- Weder von seitens des Landes M-V noch von der Deutschen Bahn AG –
 DB Immobilien noch vom gegenwärtigen Pächter, die Regio Infra Nord-Ost GmbH & Co. KG, geben Auskunft über mögliche Verkehrszahlen.
- Nach der Entscheidung zur Einstellung des Schienenverkehrs auf dem größten Teil der Strecke zwischen Parchim und Waren, verkehren seit Dezember 2014 Busse.
- Der Fahrplan im Saisonverkehr 2018 beinhaltete für alle 6 Fahrtage auf der Südbahnstrecke Parchim – Inselstadt Malchow max. 4 Zugpaare pro Tag.

Um zu einer Aussage zur möglichen Lärmbelastung aus dem Schienenverkehr zu kommen werden folgende Verkehrszahlen vorgeschlagen:

 Für den Reiseverkehr werden die Zugzahlen des letzten gültigen Fahrplanes von 2014 für diesen Streckenabschnitt zu Grunde gelegt. Dabei wird von einer Zugzahl mit 16 Reisezügen (Triebwagen) ausgegangen:

tags (6:00 Uhr bis 22:00 Uhr) 15 Reisezügen nachts (22:00 Uhr bis 6:00 Uhr) 1 Reisezug

- Für den Güterverkehr werden täglich zwei Durchfahrten zu Grunde gelegt: tags (6:00 Uhr bis 22:00 Uhr) 2 Güterzüge nachts (22:00 Uhr bis 6:00 Uhr) keiner
- Als zulässige maximale Geschwindigkeit wird v = 70 km/h für den Streckenabschnitt gewählt. Analog dem Streckenabschnitt Ludwigslust – Parchim.

Bei der Umsetzung dieser Arbeitsannahmen ergibt sich im Rechenmodell für die eingleisige Strecke Folgendes:

7	7		-101-1	-101.1		- 11								
-	Zugname	v	n/Std	n/Std	Fz-	Fz-	Kat	Z/V	UKat	Fz-	Achsen	Lw',A*/dB	Lw',A*/dB	
Nr.		km/h	Tag	Nacht	Nr.	Тур				Anz.		Tag	Nacht	
1	RB-VT	70	0,940	0,125	1	1	6	A4	2	1	4	66,25	57,49	
2	GE-V	70	0,125	0,000	1	1	8	Z2	1	1	4	62,25		
					2	1	10	Z2	1	1	4	61,45		
					3	1	10	Z15	5	1	4	61,91		
					4	1	10	Z18	6	6	4	64,78		
					5	1	10	Z5	2	20	4	69,59		

3. Angaben zu den Immissionspunkten

- Immissionsorte IO1 bis IO5

Diese Immissionspunkte wurden zum Vergleich der Beurteilungspegel mit den Orientierungswerten der DIN 18005 für die unterschiedlichen Arten der Lärmquellen (Schienenverkehr und Straßenverkehr) gewählt, die jeweils gesondert zu beurteilen sind. Die Immissionsorte befinden sich jeweils auf der Grenze des Geltungsbereiches bzw. der bebaubaren Fläche (Mindestabstand zur Bahnanlage).

Die Höhe der Immissionsorte über OKG befindet sich:

LfdNr.	Immissionsorte	Höhe über OKG	Nutzungsebene
1	IO1 bis IO9	2,0 m	Frei- und Grünflächen
2	IO1* bis IO9*	3,5 m	Erdgeschoß
3	IO1** bis IO6**	6,3 m	1. Obergeschoß

- Immissionsraster:

Die Rasterdarstellung erfolgt nur für die Darstellung der Lärmpegelbereiche nach DIN 4109.

Schrittweite:

10 m Raster über das gesamte Betrachtungsgebiet

Rasterhöhe für die Nutzungsebenen:

mit 3,5 m und 6,3 m über OKG.

Entfernungen zwischen Lärmquelle und Wohnbebauung: siehe Übersichtsplan.

4. Angaben zur Schallausbreitung

Geländeverlauf - geringe Höhenunterschiede

Bebauung auf der vorgesehenen Wohnbaufläche nicht

vorhanden, im Umfeld - örtliche Bebauung

Abschirmung - in Anlehnung an die TA-Lärm durch vorhandene

Gebäude und umliegender Bebauung

Reflexionsflächen - vorhandene Wände / Gebäude werden berücksichtigt

Bewuchs - vorhanden, aber unwesentlich für die Berechnung

5. Höhenprofil

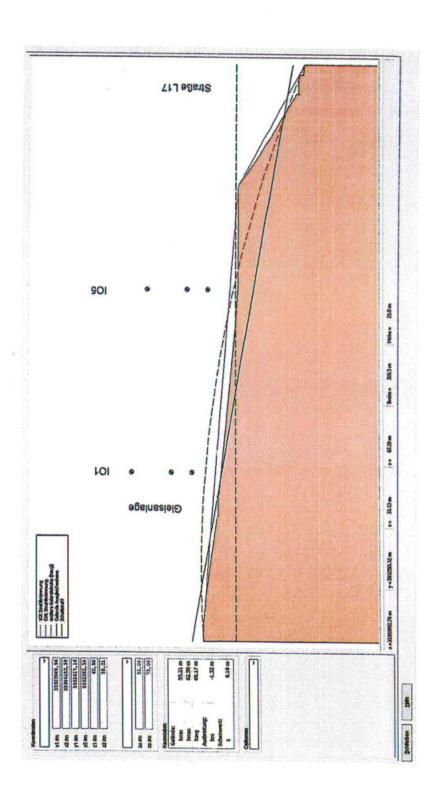


Bild 2 – Höhenprofil gemäß Schnittlinie

Vorhaben: Bebauungsplan Nr. 2 "Am Berg" der Gemeinde Passow

Standort: Landkreis Ludwigslust – Parchim

Ergebnisse der schalltechnischen Berechnungen

Inhaltsübersicht

Basiswerte für die Berechnung der Beurteilungspegel	1
1.1 Lärmquellen	1
1.2 Lärmpegelbereiche	2
Ergebnisse der schalltechnischen Berechnungen	2
2.1 Beurteilungspegel an den Immissionsorten	2
2.1.1 Prognose Schienenverkehr	2
2.1.2 Straßenverkehr 2020/2025	3
3. Datenblätter der Ausbreitungsrechnung / Elemente zusammengefasst	4
3.1 Schienenverkehr	4
3.2 Prognose Straßenverkehr - Auszug hier für die IP 5 bis IP5**	10
3.3 Verzeichnis der Formelzeichen	12
4. Isoflächen der Lärmpegelbereiche	14

1. Basiswerte für die Berechnung der Beurteilungspegel

Die Ausgangswerte der einzelnen Emissionsquellen für die Berechnungen der Beurteilungspegel sind als Anlage 2 und Anlage 3 zusammengestellt. Darüber hinaus ist folgendes zu bemerken:

1.1 Lärmquellen

Schienenverkehr

Die Berechnung erfolgt nach der neuen Schall 03 für die Strecken 6935 entsprechend der Darstellung der Anlage 3 Punkt 2.2.

Straßenverkehr

Bei der angegebenen Straße werden die Verkehrszahlen für das Prognosejahr 2025 berücksichtigt. Die Berechnung erfolgt nach der RLS90.

Gewerbelärm

Ist nicht Gegenstand der Berechnung.

1.2 Lärmpegelbereiche

Der maßgebliche Außenlärm wird aus den berechneten Beurteilungspegeln ermittelt. Daraus werden dann nach DIN 4109-2 die Lärmpegelbereiche bestimmt.

Die Festlegung der Lärmpegelbereiche dient nur zur Dimensionierung des passiven Schallschutzes der Außenbauteil bei der Auslegung der Gebäudehülle für schutzbedürftige Räume.

2. Ergebnisse der schalltechnischen Berechnungen

2.1 Beurteilungspegel an den Immissionsorten

2.1.1 Prognose Schienenverkehr

Kurze Liste

- Unbenannt -

Immissionsberechnung

Beurteilung nach DIN 18005

Schienenverkehr Einstellung: Referenzeinstellung: Schall 03

	Tag (6h-22	2h)		Nacht (22		
	IRW	L r,A	Δ	IRW	Ĺ r,A	Δ
	/dB	/dB	/dB	/dB	/dB	/dB
IO1	55	55,14	0,14	45	39,36	0,00
102	55	55,03	0,03	45	39,25	0,00
IO3	55	48,02	0,00	45	32,25	0,00
104	55	45,48	0,00	45	29,73	0,00
105	55	44,05	0,00	45	28,31	0,00
IO1*	55	56,19	1,19	45	40,45	0,00
102*	55	56,31	1,31	45	40,57	0,00
IO3*	55	48,74	0,00	45	32,95	0,00
104*	55	45,70	0,00	45	29,94	0,00
105*	55	44,11	0,00	45	28,36	0,00
IO1**	55	56,53	1,53	45	40,79	0,00
102**	55	56,47	1,47	45	40,74	0,00
IO3**	55	49,88	0,00	45	34,10	0,00
104**	55	46,38	0,00	45	30,61	0,00
IO5**	55	44,57	0,00	45	28,82	0,00

2.1.2 Straßenverkehr 2020/2025

Kurze Liste

- Unbenannt -

Immissionsberechnung

Beurteilung nach DIN 18005

Straßenverkehr Einstellung: Referenzeinstellung

Ottabeliverkeili		Linstellung	. INCICICITZ	emotenting		
	Tag (6h-22	2h)		Nacht (22	h-6h)	
	· IRW	L r,A	Δ	IRW	L r,A	Δ
	/dB	/dB	/dB	/dB	/dB	/dB
101	55	48,23	0,00	45	37,89	0,00
102	55	47,85	0,00	45	37,36	0,00
103	55	48,86	0,00	45	38,40	0,00
104	55	50,57	0,00	45	40,25	0,00
105	55	52,34	0,00	45	42,02	0,00
IO1*	55	48,43	0,00	45	38,09	0,00
102*	55	48,17	0,00	45	37,68	0,00
IO3*	55	49,42	0,00	45	38,94	0,00
104*	55	50,92	0,00	45	40,58	0,00
105*	55	52,67	0,00	45	42,34	0,00
IO1**	55	48,69	0,00	45	38,35	0,00
102**	55	48,60	0,00	45	38,10	0,00
103**	55	50,16	0,00	45	39,66	0,00
104**	55	51,59	0,00	45	41,25	0,00
105**	55	53,17	0,00	45	42,84	0,00

3. Datenblätter der Ausbreitungsrechnung / Elemente zusammengefasst

3.1 Schienenverkehr

Strecke 6935 - Auszug hier für die IP 1 bis IP 1**

Lange Liste - Elemente zusammengefasst

Immissionsberechnung	Beurteilung nach DIN 18005	
Schienenverkehr	Einstellung: Referenzeinstellung: Schall 03	Tag (6h-22h)

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	(*1)	Lr(IP) /dB(A)
IPkt001	101	33304037,67	5932556,80	63,273	Zyklus	2 55,14

Schall 03		LfT = Lw +	KS + Do	mega + [OI + DRefl	- Adiv - A	Aatm - Agr	- Abar				
Element	Bezeichnung	Lw	KS	Dome-	DI	DRefl	Abstand	Adiv	Aatm	Agr	Abar	LfT
		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A)
S03Z001	Schiene											
	63 Hz	97,70	-0,01	2,89	-0,31	-0,01		46,59	0,00	0,94	1,06	43,82
	125 Hz	97,94	-0,01	2,91	-0,31	-0,01		46,53	0,01	1,09	1,16	43,85
	250 Hz	98,63	-0,01	2,96	-0,25	-0,01		46,50	0,03	1,60	1,34	43,97
	500 Hz	105,87	-0,00	3,00	0,03	-0,00		45,07	0,05	1,69	0,31	52,09
	1000 Hz	106,00	-0,00	3,00	0,04	-0,00		44,11	0,10	1,75	0,28	52,15
	2000 Hz	100,20	-0,00	2,99	0,08	-0,00		42,32	0,25	1,72	0,25	46,12
	4000 Hz	94,82	-0,00	3,00	0,25	-0,00		39,60	0,79	1,68	0,22	39,95
	8000 Hz	81,87	0,00	2,99	0,53	0,00		37,77	2,59	1,42	0,15	25,35

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	(*1)	Lr(IP) /dB(A)
IPkt006	IO1*	33304037,67	5932556,80	64,773	Zyklus	3 56,19

Schall 03		LfT = Lw +	KS + Do	mega + D	I + DRefl	Adiv - A	atm - Agr	- Abar				
Element	Bezeichnung	Lw	KS	Dome-	DI	DRefl	Abstand	Adiv	Aatm	Agr	Abar	LfT
		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A)
S03Z001	Schiene											1
	63 Hz	97,70	-0,00	2,83	-0,31	-0,00		46,43	0,00	0,43	1,45	44,05
	125 Hz	97,94	-0,00	2,88	-0,11	-0,00		45,70	0,01	0,42	0,90	44,83
	250 Hz	98,63	-0,00	2,96	0,07	-0,00		44,89	0,03	0,48	0,47	45,90
	500 Hz	105,87	-0,00	2,99	0,08	-0,00		44,34	0,05	0,53	0,47	53,10
	1000 Hz	106,00	-0,00	3,00	0,07	-0,00		43,37	0,09	0,55	0,40	53,25
	2000 Hz	100,18	-0,00	2,99	0,13	-0,00		41,76	0,24	0,52	0,37	47,19
	4000 Hz	94,81	-0,00	3,00	0,27	-0,00		39,36	0,78	0,43	0,28	41,11
	8000 Hz	81,86	0,00	2,98	0,50	0,00		37,81	2,59	0,26	0,00	26,60

IPKT	IPKT: Bezeichnung	IPKT: x/m	IPKT: y /m	IPKT: z /m	(*1)	Lr(IP) /dB(A)
IPkt011	IO1**	33304037,67	5932556,80	67,573	Zyklus	2 56,53

Schall 03	LfT = Lw + KS + Domega + DI + DRefi - Adiv - Aatm - Agr - Abar
7	

Element	Bezeichnung	Lw	KS	Dome-	DI	DRefl	Abstand	Adiv	Aatm	Agr	Abar	LfT
*.		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A)
S03Z001	Schiene											
	63 Hz	97,70	-0,00	2,80	-0,15	-0,00		45,64	0,00	0,20	0,41	45,09
	125 Hz	97,94	-0,00	2,84	-0,18	-0,00		45,42	0,01	0,22	0,38	45,36
	250 Hz	98,63	-0,00	2,95	-0,14	-0,00		45,04	0,03	0,27	0,44	45,99
	500 Hz	105,87	-0,00	2,99	-0,16	-0,00		44,44	0,05	0,26	0,35	53,31
	1000 Hz	106,00	-0,00	3,00	-0,13	-0,00		43,50	0,10	0,25	0,26	53,48
	2000 Hz	100,13	-0,00	2,99	-0,07	-0,00		41,85	0,26	0,22	0,00	47,63
	4000 Hz	94,55	-0,00	3,00	0,08	-0,00		39,81	0,83	0,16	0,00	41,43
	8000 Hz	81,58	0,00	2,97	0,36	0,00		38,36	2,76	0,07	0,00	26,51

(*1): Bei Schall03-Elementen wird der normgerechte Pegel über ein Iterationsverfahren mit fortlaufender Halbierung der Teilstücke ermittelt.

Die Iteration endet, wenn der Unterschied weniger als 0.1 dB beträgt.

Das vorletzte Ergebnis ist maßgebend und wird hier als Summenpegel (Zyklus ...) dargestellt.

Die Zwischenergebnisse in dieser Liste stammen aber aus dem ersten Iterationsschritt: Zyklus 1.

Lange Liste - Elemente zusammengefasst

Immissionsberechnung	Beurteilung nach DIN 18005	
Schienenverkehr	Einstellung: Referenzeinstellung: Schall 03	Nacht (22h-6h)

IPKT	IPKT: Bezeichnung	IPKT: x/m	IPKT: y /m	IPKT: z /m	(*1)	Lr(IP) /dB(A)
IPkt001	101	33304037,67	5932556,80	63,273	Zyklu	s 2 39,36

Schall 03		LfT = Lw +	LfT = Lw + KS + Domega + DI + DRefi - Adiv - Aatm - Agr - Abar										
Element	Bezeichnung	Lw	Lw KS	Dome-	DI	DRefl	Abstand	Adiv	Aatm	Agr	Abar	LfT	
		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A)	
S03Z001	Schiene												
	63 Hz	84,26	-0,14	2,66	-0,46	-0,14		46,87	0,00	1,09	1,28	30,05	
	125 Hz	85,41	-0,13	2,72	-0,49	-0,13		47,34	0,01	1,58	1,81	30,33	
	250 Hz	85,59	-0,12	2,76	-0,37	-0,12		46,72	0,03	1,77	1,51	30,65	
	500 Hz	90,36	-0,03	2,94	0,01	-0,03		45,11	0,05	1,73	0,32	36,54	
	1000 Hz	90,05	-0,03	2,94	0,01	-0,03		44,12	0,10	1,77	0,29	36,18	
	2000 Hz	84,33	-0,07	2,85	0,02	-0,07		42,33	0,25	1,74	0,25	30,23	
	4000 Hz	79,56	-0,06	2,89	0,19	-0,06		39,60	0,79	1,69	0,22	24,68	
	8000 Hz	68,23	0,00	3,00	0,55	0,00		37,74	2,59	1,54	0,16	11,60	

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	(*1)	Lr(IP) /dB(A)
IPkt006	IO1*	33304037,67	5932556,80	64,773	Zyklu	

Schall 03		LfT = Lw +	LfT = Lw + KS + Domega + DI + DRefl - Adiv - Aatm - Agr - Abar										
Element	Bezeichnung	Lw	KS	Dome-	DI	DRefl	Abstand	Adiv	Aatm	Agr	Abar	LfT	
		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A)	
S03Z001	Schiene												
	63 Hz	84,26	-0,11	2,65	-0,42	-0,11		46,64	0,00	0,48	1,71	30,34	
	125 Hz	85,41	-0,08	2,80	-0,10	-0,08		45,97	0,01	0,51	1,27	31,90	
	250 Hz	85,59	-0,07	2,86	0,04	-0,07		44,91	0,03	0,50	0,51	32,81	
	500 Hz	90,36	-0,02	2,96	0,07	-0,02		44,35	0,05	0,54	0,48	37,58	
	1000 Hz	90,05	-0,02	2,96	0,05	-0,02		43,37	0,09	0,55	0,41	37,29	
	2000 Hz	84,32	-0,05	2,89	0,08	-0,05		41,76	0,24	0,52	0,37	31,32	

Anlage 4 1 4000 Hz 79,55 -0,03 2,94 0,24 -0,03 39,35 0,78 0,43 0,28 25,85 | 8000 Hz 0,00 3,00 68,21 0,52 0,00 37,79 2,59 0,27 0,00 12,96

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	(*1) I	Lr(IP) /dB(A)
IPkt011	IO1**	33304037,67	5932556,80	67,573	Zyklus 2	2 40,79

Schall 03		LfT = Lw -	LfT = Lw + KS + Domega + DI + DRefi - Adiv - Aatm - Agr - Abar										
Element	Bezeichnung	Lw	KS	Dome-	DI	DRefl	Abstand	Adiv	Aatm	Agr	Abar	LfT	
		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A)	
S03Z001	Schiene											1	
	63 Hz	84,26	-0,04	2,76	-0,14	-0,04		45,66	0,00	0,21	0,48	31,60	
	125 Hz	85,41	-0,03	2,88	-0,11	-0,03		45,45	0,01	0,25	0,52	32,71	
	250 Hz	85,59	-0,03	2,92	-0,14	-0,03		45,04	0,03	0,28	0,48	32,92	
	500 Hz	90,36	-0,01	2,98	-0,16	-0,01		44,44	0,05	0,27	0,36	37,80	
	1000 Hz	90,05	-0,01	2,99	-0,13	-0,01		43,50	0,10	0,26	0,26	37,52	
	2000 Hz	84,27	-0,02	2,95	-0,08	-0,02		41,85	0,26	0,22	0,00	31,77	
	4000 Hz	79,29	-0,02	2,96	0,06	-0,02		39,81	0,83	0,16	0,00	26,17	
	8000 Hz	67,95	0,00	3,00	0,37	0,00		38,36	2,76	0,07	0,00	12,88	

(*1): Bei Schall03-Elementen wird der normgerechte Pegel über ein Iterationsverfahren mit fortlaufender Halbierung der Teilstücke ermittelt.

Die Iteration endet, wenn der Unterschied weniger als 0.1 dB beträgt.

Das vorletzte Ergebnis ist maßgebend und wird hier als Summenpegel (Zyklus ...) dargestellt.

Die Zwischenergebnisse in dieser Liste stammen aber aus dem ersten Iterationsschritt: Zyklus 1.

Lange Liste - Linienabschnitte zusammengefasst / A-Summenpegel gebildet

Lange Liste - Linienabschnitte zusammengefasst / A-Summenpegel gebildet

Immissionsberechnung	Beurteilung nach DIN 18005	
Schienenverkehr	Einstellung: Referenzeinstellung: Schall 03	Tag (6h-22h)

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	(*1)	Lr(IP) /dB(A)
IPkt001	101	33304037,67	5932556,80	63,273	Zyklus	, , , ,

Schall 03		LfT = Lw -	+ KS + Do	mega + [I + DRefl	- Adiv - A	Aatm - Agr	- Abar				
Element	Bezeichnung	Lw	KS	Dome-	DI	DRefl	Abstand	Adiv	Aatm	Agr	Abar	LfT
		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A)
S03Z001	Schiene											
	Abschnitt 1	101,60	0,00	3,01	-6,44	0,00		76,54	4,36	4,77	0,00	10,31
	Abschnitt 2	94,27	0,00	3,01	-6,57	0,00		74,67	3,70	4,75	0,01	5,79
	Abschnitt 3	101,18	0,00	3,01	-6,16	0,00		72,22	2,97	4,74	0,02	16,69
	Abschnitt 4	95,41	0,00	3,01	-6,40	0,00		68,61	2,11	4,72	0,00	15,60
	Abschnitt 5	99,71	-0,14	2,74	-6,22	-0,14		62,87	1,18	4,68	0,02	26,96
	Abschnitt 6	93,69	-0,29	2,22	-5,62	-0,29		56,74	0,87	4,60	0,33	28,46
	Abschnitt 7	90,04	0,00	3,01	-5,34	0,00		52,58	0,42	4,44	0,02	30,03
	Abschnitt 8	91,10	0,00	3,01	-3,75	0,00		46,36	0,21	3,83	0,16	39,10
	Abschnitt 9	93,06	0,00	2,99	0,43	0,00		37,67	0,08	1,45	0,46	54,73
	Abschnitt 10	94,07	0,00	3,01	-4,67	0,00		51,07	0,35	4,25	0,16	35,84
	Abschnitt 11	89,08	0,00	3,01	-5,09	0,00		56,94	0,66	4,43	0,26	24,35
	Abschnitt 12	96,27	-0,11	2,79	-4,96	-0,11		60,78	1,00	4,53	0,19	27,20
	Abschnitt 13	98,55	-0,62	1,86	-5,88	-0,62		65,99	1,67	4,64	0,09	22,61

Abschnitt 14 101,04 -0,45 2,15 -6,44 -0,45 70,75 2,57 4,77 0,02 18,28

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z/m	(*1)	Lr(IP) /dB(A)
IPkt006	101*	33304037,67	5932556,80	64,773	Zyklus	3 56,19

Schall 03		LfT = Lw +	KS + Do	mega + D	I + DRefl	- Adiv - A	Aatm - Agr	- Abar				
Element	Bezeichnung	Lw	KS	Dome-	DI		Abstand	Adiv	Aatm	Agr	Abar	Lfī
		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A)
S03Z001	Schiene											1
	Abschnitt 1	101,60	0,00	3,01	-6,44	0,00		76,54	4,36	4,76	0,00	10,32
	Abschnitt 2	94,27	0,00	3,01	-6,57	0,00		74,67	3,70	4,74	0,02	5,79
	Abschnitt 3	101,18	0,00	3,01	-6,16	0,00		72,22	2,97	4,72	0,04	16,69
	Abschnitt 4	95,41	0,00	3,01	-6,40	0,00		68,61	2,12	4,69	0,01	15,64
	Abschnitt 5	99,71	-0,13	2,75	-6,22	-0,13		62,85	1,18	4,60	0,04	27,03
	Abschnitt 6	93,57	-0,24	2,31	-5,60	-0,24		56,74	0,88	4,46	0,23	28,67
	Abschnitt 7	90,04	0,00	3,01	-5,33	0,00		52,59	0,42	4,20	0,02	30,28
	Abschnitt 8	91,10	0,00	3,01	-3,70	0,00		46,29	0,21	3,22	0,08	39,79
	Abschnitt 9	93,06	0,00	2,98	0,44	0,00		37,73	0,08	0,30	0,52	55,84
	Abschnitt 10	94,07	0,00	3,01	-4,64	0,00		51,00	0,35	3,91	0,15	36,20
	Abschnitt 11	89,08	0,00	3,01	-5,09	0,00		56,95	0,66	4,29	0,38	24,36
	Abschnitt 12	96,27	-0,11	2,79	-4,96	-0,11		60,78	1,00	4,44	0,27	27,21
	Abschnitt 13	98,55	-0,61	1,86	-5,88	-0,61		65,99	1,67	4,60	0,13	22,61
	Abschnitt 14	101,04	-0,23	2,56	-6,39	-0,23		70,79	2,58	4,74	0,04	18,27

IPKT	IPKT: Bezeichnung	IPKT: x/m	IPKT: y /m	IPKT: z/m	(*1)	Lr(IP) /dB(A)
IPkt011	IO1**	33304037,67	5932556,80	67,573	Zyklus 2	2 56,53

Schall 03		LfT = Lw +	KS + Do	mega + D	I + DRefl	- Adiv - A	Aatm - Agr	- Abar				
Element	Bezeichnung	Lw	KS	Dome-	DI	DRefl	Abstand	Adiv	Aatm	Agr	Abar	Lf
		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A
S03Z001	Schiene											12244
	Abschnitt 1	101,60	0,00	3,01	-6,44	0,00		76,57	4,37	4,74	0,02	10,28
	Abschnitt 2	94,27	0,00	3,01	-6,57	0,00		74,67	3,70	4,70	0,05	5,80
	Abschnitt 3	101,18	0,00	3,01	-6,16	0,00		72,22	2,96	4,68	0,08	16,69
	Abschnitt 4	95,41	0,00	3,01	-6,40	0,00		68,61	2,12	4,62	0,02	15,70
	Abschnitt 5	99,71	-0,13	2,75	-6,21	-0,13		62,83	1,18	4,46	0,05	27,17
	Abschnitt 6	93,18	-0,10	2,61	-5,59	-0,10		56,67	0,84	4,18	0,04	28,91
	Abschnitt 7	90,04	0,00	3,01	-5,30	0,00		52,59	0,42	3,74	0,01	30,75
	Abschnitt 8	91,10	0,00	3,00	-3,59	0,00		46,21	0,21	2,08	0,05	40,97
	Abschnitt 9	93,04	0,00	2,97	0,26	0,00		38,30	0,09	0,05	0,30	56,08
	Abschnitt 10	94,07	0,00	3,01	-4,58	0,00		50,91	0,35	3,28	0,15	36,87
	Abschnitt 11	89,08	0,00	3,01	-5,07	0,00		56,95	0,66	4,03	0,60	24,40
	Abschnitt 12	96,26	-0,05	2,90	-4,94	-0,05		60,78	1,00	4,28	0,42	27,22
	Abschnitt 13	98,44	-0,16	2,69	-5,75	-0,16		65,99	1,65	4,51	0,21	22,62
	Abschnitt 14	101,04	0,00	3,01	-6,34	0,00		70,78	2,58	4,69	0,05	18,31

(*1): Bei Schall03-Elementen wird der normgerechte Pegel über ein Iterationsverfahren mit fortlaufender Halbierung der Teilstücke ermittelt.

Die Iteration endet, wenn der Unterschied weniger als 0.1 dB beträgt.

Das vorletzte Ergebnis ist maßgebend und wird hier als Summenpegel (Zyklus ...) dargestellt.

Die Zwischenergebnisse in dieser Liste stammen aber aus dem ersten Iterationsschritt: Zyklus 1.

	sberechnung	Beurteilur	ng nach D	IN 18005									
Schienen	verkehr	Einstellun	g: Refere	nzeinstell	ung: Scha	II 03						Nacht	t (22h-6h
IPKT	IPKT: Bezeichnung			KT: x /m			PKT: y/m		IP	KT: z/m	(*1)	Lr(I	P) /dB(A
IPkt001	IO1		333	04037,67		593	32556,80			63,273	Zy	klus 2	39,3
Schall 03		lfT=lw	+ KS + D	nmena + l	OI + DRefl	- Adiv - A	Aatm - Agr	- Ahar		100			
Element	Bezeichnung	Lw	KS	Dome-	DI		Abstand	Adiv	Aatm	And	Abar		1.5
Licinon	Dezelemeng	/dB	/dB	/dB	/dB	/dB	Austanu	/dB	/dB	Agr /dB	/dB		Lf /dB(A
S03Z001	Schiene				1,52	,,,,		700	700	700	745		ЛОВ(А
	Abschnitt 1	85,88	0,00	3,01	-6,44	0,00		76,55	3,69	4,78	0,00		-5,2
	Abschnitt 2	78,54	0,00	3,01	-6,57	0,00		74,67	3,15	4,75	0,01		-9,80
	Abschnitt 3	85,45	0,00	3,01	-6,16	0,00		72,22	2,54	4,74	0,02		1,0
	Abschnitt 4	79,69	0,00	3,01	-6,40	0,00		68,61	1,83	4,72	0,01		-0,07
	Abschnitt 5	83,99	-3,01	-1,76	-7,13	-3,01		62,89	1,03	4,68	0,03	_	11,25
	Abschnitt 6	77,97	-5,12	-4,43	-7,68	-5,12		56,70	0,78	4,61	0,30		12,7
	Abschnitt 7	74,31	0,00	3,01	-5,34	0,00		52,58	0,38	4,45	0,04		14,29
	Abschnitt 8	75,37	0,00	3,01	-3,76	0,00		46,37	0,19	3,87	0,22	_	23,32
	Abschnitt 9	77,34	0,00	2,99	0,42	0,00		37,69	0,08	1,50	0,66		38,95
	Abschnitt 10	78,34	0,00	3,01	-4,68	0,00		51,08	0,31	4,27	0,20		-
	Abschnitt 11	73,36	0,00	3,01	-5,09	0,00		56,94	0,59	4,44	0,27		20,08
	Abschnitt 12	80,54	-2,60	-1,20	-5,94	-2,60		60,77	0,88	4,54	0,20		_
	Abschnitt 13	82,83	-7,56	-7,16	-9,25	-7,56		65,99	1,46	4,65	0,10		11,48
	7100011111111111	02,00	.,00	1,10	0,20	1,00			1,40	4,00	0, 10		0.9
	Abschnitt 14	85,31	-6,29	-5,75	-8,78	-6,29		70,77	2,21	4,77	0,02		
IPKT		85,31			-8,78		PKT: v /m		2,21			1.e/1	2,63
IPKT	IPKT: Bezeichnung	85,31	IF	PKT: x /m	-8,78	IF	PKT: y /m		2,21	KT: z/m	(*1)		2,63 P) /dB(A)
IPKT IPkt006		85,31	IF		-8,78	IF	PKT: y /m 32556,80		2,21		(*1)	Lr(I klus 3	2,63 P) /dB(A
	IPKT: Bezeichnung		IF 3330	PKT: x /m 04037,67		IF 59:	32556,80	70,77	2,21	KT: z/m	(*1)		2,63 P) /dB(A
IPkt006	IPKT: Bezeichnung		IF 3330	PKT: x /m 04037,67		- Adiv - A		70,77	2,21	KT: z /m 64,773	(*1) Zyl		2,63 P) /dB(A) 40,45
IPkt006 Schall 03	IPKT: Bezeichnung	LfT = Lw	3330 + KS + Do	PKT: x /m 04037,67 omega + l	DI + DRefl	- Adiv - A	32556,80 Aatm - Agr	70,77	2,21	KT: z/m	(*1) Zyl		2,63 P) /dB(A 40,45
IPkt006 Schall 03	IPKT: Bezeichnung	LfT = Lw	IF 3336 + KS + Do KS	PKT: x /m 04037,67 omega + l Dome-	DI + DRefi	F 59:	32556,80 Aatm - Agr	70,77	2,21	KT: z /m 64,773	(*1) Zyl		2,63 P) /dB(A 40,45
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung	LfT = Lw	IF 3336 + KS + Do KS	PKT: x /m 04037,67 omega + l Dome-	DI + DRefi	F 59:	32556,80 Aatm - Agr	70,77	IP Aatm /dB	KT: z /m 64,773 Agr /dB	(*1) Zyl Abar /dB		2,63 P) /dB(A 40,45
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene	LfT = Lw Lw /dB	IF 3333(+ KS + Do KS /dB	PKT: x /m 04037,67 pmega + Dome- /dB	DI + DRefl DI /dB	F 59: - Adiv - ADRefi	32556,80 Aatm - Agr	70,77 - Abar Adiv /dB	2,21 IP Aatm /dB	KT: z /m 64,773 Agr /dB	(*1) Zyl Abar /dB		2,63 P) /dB(A 40,45 Lfl /dB(A
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1	LfT = Lw - Lw /dB 85,88 78,54	IF 33330 + KS + Do KS /dB	PKT: x /m 04037,67 omega + l Dome- /dB 3,01 3,01	DI + DRefi DI /dB -6,44 -6,57	F 59: - Adiv - A DRefi /dB 0,000	Aatm - Agr Abstand	70,77 - Abar Adiv /dB 76,55 74,67	2,21 IP Aatm /dB 3,69 3,15	KT: z /m 64,773 Agr /dB 4,76 4,74	(*1) Zyl Abar /dB 0,00 0,03		2,63 P) /dB(A 40,45 Lfi /dB(A
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2	LfT = Lw - Lw /dB 85,88	IF 3333(+ KS + Do KS /dB	PKT: x /m 04037,67 omega + l Dome- /dB 3,01 3,01	DI + DRefi DI /dB	F 59: - Adiv - A	Aatm - Agu Abstand	70,77 - Abar Adiv /dB	2,21 IP Aatm /dB 3,69 3,15 2,54	KT: z /m 64,773 Agr /dB 4,76 4,74 4,72	(*1) Zyl Abar /dB 0,00 0,03 0,04		2,63 P) /dB(A) 40,48 Lff /dB(A) -5,23 -9,80 1,08
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2 Abschnitt 3	LfT = Lw - /dB 85,88 78,54 85,45	IF 3336 + KS + Dc KS /dB 0,00 0,00	PKT: x /m 04037,67 Domega + I Dome- /dB 3,01 3,01 3,01	DI + DRefi DI /dB -6,44 -6,57 -6,16	F 59: - Adiv - A DRefi /dB 0,00 0,00 0,00	32556,80 Aatm - Agr Abstand	70,77 - Abar Adiv /dB 76,55 74,67 72,22 68,61	2,21 IP Aatm /dB 3,69 3,15 2,54 1,83	Agr //dB 4,76 4,72 4,69	(*1) Zyl Abar /dB 0,00 0,03 0,04 0,02		2,63 P) /dB(A) 40,45 Lff /dB(A) -5,23 -9,80 1,05
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2 Abschnitt 3 Abschnitt 4	LfT = Lw - Lw - /dB - 85,88 - 78,54 - 85,45 - 79,69	IF 3336 + KS + Do KS /dB 0,00 0,00 0,00 0,00 0,00	PKT: x /m 04037,67 Dome- /dB 3,01 3,01 3,01 3,01	DI + DRefi DI /dB -6,44 -6,57 -6,16 -6,40 -7,11	IF 59: - Adiv - F DRefi /dB 0,00 0,00 0,00 0,00 -2,98	Aatm - Agr Abstand	70,77 - Abar Adiv /dB 76,55 74,67 72,22 68,61 62,88	2,21 IP Aatm /dB 3,69 3,15 2,54 1,83 1,04	Agr /dB 4,76 4,74 4,72 4,69 4,61	(*1) Zyl Abar /dB 0,00 0,03 0,04 0,02 0,04		2,63 P) /dB(A 40,45 Lff /dB(A -5,23 -9,86 1,06 -0,04 11,3
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2 Abschnitt 3 Abschnitt 4 Abschnitt 5	LfT = Lw - Lw /dB	IF 3333(+ KS + Do KS /dB 0,00 0,00 0,00 0,00 -2,98 -4,58	PKT: x /m 04037,67 pmega + 1 Dome- /dB 3,01 3,01 3,01 3,01 -1,72 -3,79	DI + DRefi DI /dB -6,44 -6,57 -6,16 -6,40 -7,11	IF 59: - Adiv - A DRefi /dB 0,00 0,00 0,00 -2,98 -4,58	Aatm - Agr Abstand	70,77 - Abar Adiv /dB 76,55 74,67 72,22 68,61 62,88 56,71	2,21 IP Aatm /dB 3,69 3,15 2,54 1,83 1,04 0,79	Agr /dB 4,76 4,74 4,72 4,69 4,61 4,46	(*1) Zyl Abar /dB 0,00 0,03 0,04 0,02 0,04 0,23		2,63 P) /dB(A 40,45 Lf1 /dB(A -5,23 -9,80 1,03 -0,04 11,33 12,93
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2 Abschnitt 3 Abschnitt 4 Abschnitt 5 Abschnitt 6	LfT = Lw - Lw /dB / 85,88 78,54 85,45 79,69 83,99	IF 3336 + KS + Do KS /dB 0,00 0,00 0,00 0,00 -2,98	PKT: x /m 04037,67 pmega + l Dome- /dB 3,01 3,01 3,01 3,01 -1,72	DI + DRefi DI /dB -6,44 -6,57 -6,16 -6,40 -7,11	IF 59: - Adiv - F DRefi /dB 0,00 0,00 0,00 0,00 -2,98	Aatm - Agr Abstand	70,77 - Abar Adiv /dB 76,55 74,67 72,22 68,61 62,88	2,21 IP Aatm /dB 3,69 3,15 2,54 1,83 1,04 0,79 0,38	Agr /dB 4,76 4,74 4,72 4,69 4,61 4,46 4,21	(*1) Zyl Abar /dB 0,00 0,03 0,04 0,02 0,04 0,23 0,04		2,63 P) /dB(A 40,45 Lf1 /dB(A -5,23 -9,80 -0,00 11,33 12,93 14,56
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2 Abschnitt 3 Abschnitt 4 Abschnitt 5 Abschnitt 6 Abschnitt 7	LfT = Lw /dB /dB 85,88 78,54 85,45 79,69 83,99 77,85 74,31	IF 33330 + KS + D6 KS /dB 0,00 0,00 0,00 0,00 -2,98 -4,58 0,00	PKT: x /m 04037,67 Dome- /dB 3,01 3,01 3,01 3,01 -1,72 -3,79 3,01	DI + DRefi DI /dB -6,44 -6,57 -6,16 -6,40 -7,11 -7,38 -5,33	JF 59: - Adiv - A DRefi /dB 0,00 0,00 0,00 -2,98 -4,58 0,00	Aatm - Agr Abstand	70,77 - Abar Adiv /dB 76,55 74,67 72,22 68,61 62,88 56,71 52,59	2,21 IP Aatm /dB 3,69 3,15 2,54 1,83 1,04 0,79	Agr /dB 4,76 4,74 4,72 4,69 4,61 4,46 4,21 3,25	(*1) Zyl Abar /dB 0,00 0,03 0,04 0,02 0,04 0,23 0,04 0,16		2,63 P) /dB(A 40,45 Lfi /dB(A -5,23 -9,86 1,08 -0,04 11,3 12,92 14,54 24,02
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2 Abschnitt 3 Abschnitt 4 Abschnitt 5 Abschnitt 6 Abschnitt 7 Abschnitt 8	LfT = Lw - Lw - /dB - 85,88 - 78,54 - 85,45 - 79,69 - 83,99 - 77,85 - 74,31 - 75,37	IF 3333(+ KS + D0 KS /dB 0,00 0,00 0,00 -2,98 -4,58 0,00 0,00	PKT: x /m 04037,67 Dome- /dB 3,01 3,01 3,01 3,01 -1,72 -3,79 3,01 3,01	DI + DRefi DI /dB -6,44 -6,57 -6,16 -6,40 -7,11 -7,38 -5,33 -3,71	IF 59: - Adiv - A DRefi /dB 0,00 0,00 0,00 -2,98 -4,58 0,00 0,00	Aatm - Agr Abstand	70,77 - Abar Adiv /dB 76,55 74,67 72,22 68,61 62,88 56,71 52,59 46,30 37,72	2,21 IP Aatm /dB 3,69 3,15 2,54 1,83 1,04 0,79 0,38 0,19 0,08	Agr /dB 4,76 4,74 4,72 4,69 4,61 4,46 4,21 3,25 0,30	(*1) Zyl Abar /dB 0,00 0,03 0,04 0,02 0,04 0,23 0,04 0,16 0,63		2,63 P) /dB(A 40,43 Lff /dB(A -5,23 -9,86 1,08 -0,04 11,33 12,92 14,54 24,03 40,10
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2 Abschnitt 3 Abschnitt 4 Abschnitt 5 Abschnitt 6 Abschnitt 7 Abschnitt 8 Abschnitt 9	LfT = Lw - Lw - /dB - 85,88	IF 3336 + KS + Dc KS /dB 0,00 0,00 0,00 -2,98 -4,58 0,00 0,00 0,00 0,00	PKT: x /m 04037,67 Dome- /dB 3,01 3,01 3,01 -1,72 -3,79 3,01 2,99	DI + DRefi DI /dB -6,44 -6,57 -6,16 -6,40 -7,11 -7,38 -5,33 -3,71 0,45	IF 59: - Adiv - A DRefi /dB 0,00 0,00 0,00 -2,98 -4,58 0,00 0,00 0,00	Aatm - Agr	70,77 - Abar Adiv /dB 76,55 74,67 72,22 68,61 62,88 56,71 52,59 46,30 37,72 51,02	2,21 IP Aatm /dB 3,69 3,15 2,54 1,83 1,04 0,79 0,38 0,19 0,08 0,31	Agr /dB 4,76 4,74 4,72 4,69 4,61 4,46 4,21 3,25 0,30 3,94	(*1) Zyi Abar /dB 0,00 0,03 0,04 0,02 0,04 0,23 0,04 0,16 0,63 0,20		2,63 P) /dB(A 40,44 40,44 /dB(A -5,23 -9,86 1,08 -0,04 11,3 12,93 14,54 24,03 40,10 20,44
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2 Abschnitt 3 Abschnitt 4 Abschnitt 5 Abschnitt 6 Abschnitt 7 Abschnitt 7 Abschnitt 8 Abschnitt 9 Abschnitt 10	LfT = Lw - Lw - /dB - 85,88	IF 3336 + KS + Do KS /dB 0,00 0,00 0,00 -2,98 -4,58 0,00 0,00 0,00 0,00 0,00 0,00	PKT: x /m 04037,67 Dome- /dB 3,01 3,01 3,01 -1,72 -3,79 3,01 2,99 3,01	OI + DRefi DI /dB -6,44 -6,57 -6,16 -6,40 -7,11 -7,38 -5,33 -3,71 0,45 -4,65	IF 59: - Adiv - A DRefi /dB 0,00 0,00 0,00 -2,98 -4,58 0,00 0,00 0,00 0,00	Aatm - Agr Abstand	70,77 - Abar Adiv /dB 76,55 74,67 72,22 68,61 62,88 56,71 52,59 46,30 37,72 51,02 56,95	2,21 IP Aatm /dB 3,69 3,15 2,54 1,83 1,04 0,79 0,38 0,19 0,08 0,31 0,59	Agr /dB 4,76 4,74 4,72 4,69 4,61 4,46 4,21 3,25 0,30 3,94 4,30	(*1) Zyi Abar /dB 0,00 0,03 0,04 0,02 0,04 0,23 0,04 0,16 0,63 0,20 0,40		2,63 P) /dB(A) 40,48 Lff /dB(A) -5,23 -9,80 1,08 -0,04 11,31 12,92 40,10 20,48 8,62
Schall 03 Element	IPKT: Bezeichnung IO1* Bezeichnung Schiene Abschnitt 1 Abschnitt 2 Abschnitt 3 Abschnitt 4 Abschnitt 5 Abschnitt 6 Abschnitt 7 Abschnitt 7 Abschnitt 8 Abschnitt 9 Abschnitt 10 Abschnitt 11	LfT = Lw - Lw /dB 85,88 78,54 85,45 79,69 83,99 77,85 74,31 75,37 77,33 78,34 73,36	IF 3336 + KS + Do KS /dB 0,00 0,00 0,00 -2,98 -4,58 0,00 0,00 0,00 0,00 0,00 0,00 0,00	PKT: x /m 04037,67 Dome- /dB 3,01 3,01 3,01 -1,72 -3,79 3,01 2,99 3,01 3,01 -1,19	DI + DRefi DI /dB -6,44 -6,57 -6,16 -6,40 -7,11 -7,38 -5,33 -3,71 0,45 -4,65 -5,09	IF 59: - Adiv - A DRefi /dB 0,00 0,00 0,00 -2,98 -4,58 0,00 0,00 0,00 0,00 0,00	Aatm - Agr Abstand	70,77 - Abar Adiv /dB 76,55 74,67 72,22 68,61 62,88 56,71 52,59 46,30 37,72 51,02	2,21 IP Aatm /dB 3,69 3,15 2,54 1,83 1,04 0,79 0,38 0,19 0,08 0,31	Agr /dB 4,76 4,74 4,72 4,69 4,61 4,46 4,21 3,25 0,30 3,94	(*1) Zyi Abar /dB 0,00 0,03 0,04 0,02 0,04 0,23 0,04 0,16 0,63 0,20		2,63 P) /dB(A

IPKT IPKT: Be	zeichnung	IPKT: x /m	IPKT: y /m	IPKT: z/m	(*1)	Lr(IP) /dB(A)
IPkt011 IO1**		33304037,67	5932556,80	67,573	Zyklus	s 2 40,79

Schall 03		LfT = Lw + 1	KS + Do	(S + Domega + DI + DRefl - Adiv - Aatm - Agr - Abar								
Element	Bezeichnung	Lw	KS	Dome-	DI	DRefl	Abstand	Adiv	Aatm	Agr	Abar	LfT
		/dB	/dB	/dB	/dB	/dB		/dB	/dB	/dB	/dB	/dB(A)
S03Z001	Schiene											

Δn	lage	_
	a uc	-

85,88	0,00	3,01	-6,44	0,00	76,58	3,70	4,74	0,02	-5,27
78,54	0,00	3,01	-6,57	0,00	74,67	3,15	4,71	0,05	-9,79
85,45	0,00	3,01	-6,16	0,00	72,22	2,54	4,68	0,08	1,06
79,69	0,00	3,01	-6,39	0,00	68,61	1,84	4,62	0,03	0,03
83,99	-2,92	-1,64	-7,08	-2,92	62,86	1,04	4,46	0,07	11,45
77,46	-2,46	-1,08	-6,42	-2,46	56,65	0,76	4,19	0,07	13,17
74,31	0,00	3,01	-5,30	0,00	52,59	0,38	3,76	0,02	15,01
75,37	0,00	3,00	-3,59	0,00	46,21	0,19	2,12	0,09	25,22
77,32	0,00	2,98	0,28	0,00	38,29	0,08	0,05	0,34	40,34
78,34	0,00	3,01	-4,58	0,00	50,93	0,31	3,30	0,21	21,12
73,36	0,00	3,01	-5,07	0,00	56,95	0,59	4,04	0,62	8,66
80,53	-1,36	0,61	-5,41	-1,36	60,77	0,88	4,28	0,43	11,49
82,72	-3,37	-2,23	-6,89	-3,37	65,99	1,43	4,51	0,22	6,92
85,31	0,00	3,01	-6,34	0,00	70,79	2,22	4,69	0,05	2,66
	78,54 85,45 79,69 83,99 77,46 74,31 75,37 77,32 78,34 73,36 80,53 82,72	78,54 0,00 85,45 0,00 79,69 0,00 83,99 -2,92 77,46 -2,46 74,31 0,00 75,37 0,00 77,32 0,00 78,34 0,00 73,36 0,00 80,53 -1,36 82,72 -3,37	78,54 0,00 3,01 85,45 0,00 3,01 79,69 0,00 3,01 83,99 -2,92 -1,64 77,46 -2,46 -1,08 74,31 0,00 3,01 75,37 0,00 3,00 77,32 0,00 2,98 78,34 0,00 3,01 73,36 0,00 3,01 80,53 -1,36 0,61 82,72 -3,37 -2,23	78,54 0,00 3,01 -6,57 85,45 0,00 3,01 -6,16 79,69 0,00 3,01 -6,39 83,99 -2,92 -1,64 -7,08 77,46 -2,46 -1,08 -6,42 74,31 0,00 3,01 -5,30 75,37 0,00 3,00 -3,59 77,32 0,00 2,98 0,28 78,34 0,00 3,01 -4,58 73,36 0,00 3,01 -5,07 80,53 -1,36 0,61 -5,41 82,72 -3,37 -2,23 -6,89	78,54 0,00 3,01 -6,57 0,00 85,45 0,00 3,01 -6,16 0,00 79,69 0,00 3,01 -6,39 0,00 83,99 -2,92 -1,64 -7,08 -2,92 77,46 -2,46 -1,08 -6,42 -2,46 74,31 0,00 3,01 -5,30 0,00 75,37 0,00 3,00 -3,59 0,00 77,32 0,00 2,98 0,28 0,00 78,34 0,00 3,01 -4,58 0,00 73,36 0,00 3,01 -5,07 0,00 80,53 -1,36 0,61 -5,41 -1,36 82,72 -3,37 -2,23 -6,89 -3,37	78,54 0,00 3,01 -6,57 0,00 74,67 85,45 0,00 3,01 -6,16 0,00 72,22 79,69 0,00 3,01 -6,39 0,00 68,61 83,99 -2,92 -1,64 -7,08 -2,92 62,86 77,46 -2,46 -1,08 -6,42 -2,46 56,65 74,31 0,00 3,01 -5,30 0,00 52,59 75,37 0,00 3,00 -3,59 0,00 46,21 77,32 0,00 2,98 0,28 0,00 38,29 78,34 0,00 3,01 -4,58 0,00 50,93 73,36 0,00 3,01 -5,07 0,00 56,95 80,53 -1,36 0,61 -5,41 -1,36 60,77 82,72 -3,37 -2,23 -6,89 -3,37 65,99	78,54 0,00 3,01 -6,57 0,00 74,67 3,15 85,45 0,00 3,01 -6,16 0,00 72,22 2,54 79,69 0,00 3,01 -6,39 0,00 68,61 1,84 83,99 -2,92 -1,64 -7,08 -2,92 62,86 1,04 77,46 -2,46 -1,08 -6,42 -2,46 56,65 0,76 74,31 0,00 3,01 -5,30 0,00 52,59 0,38 75,37 0,00 3,00 -3,59 0,00 46,21 0,19 77,32 0,00 2,98 0,28 0,00 38,29 0,08 78,34 0,00 3,01 -4,58 0,00 50,93 0,31 73,36 0,00 3,01 -5,07 0,00 56,95 0,59 80,53 -1,36 0,61 -5,41 -1,36 60,77 0,88 82,72 -3,37 -2,23 -6,89	78,54 0,00 3,01 -6,57 0,00 74,67 3,15 4,71 85,45 0,00 3,01 -6,16 0,00 72,22 2,54 4,68 79,69 0,00 3,01 -6,39 0,00 68,61 1,84 4,62 83,99 -2,92 -1,64 -7,08 -2,92 62,86 1,04 4,46 77,46 -2,46 -1,08 -6,42 -2,46 56,65 0,76 4,19 74,31 0,00 3,01 -5,30 0,00 52,59 0,38 3,76 75,37 0,00 3,00 -3,59 0,00 46,21 0,19 2,12 77,32 0,00 2,98 0,28 0,00 38,29 0,08 0,05 78,34 0,00 3,01 -4,58 0,00 50,93 0,31 3,30 73,36 0,00 3,01 -5,07 0,00 56,95 0,59 4,04 80,53 -1,36	85,88 0,00 3,01 -6,44 0,00 76,58 3,70 4,74 0,02 78,54 0,00 3,01 -6,57 0,00 74,67 3,15 4,71 0,05 85,45 0,00 3,01 -6,16 0,00 72,22 2,54 4,68 0,08 79,69 0,00 3,01 -6,39 0,00 68,61 1,84 4,62 0,03 83,99 -2,92 -1,64 -7,08 -2,92 62,86 1,04 4,46 0,07 77,46 -2,46 -1,08 -6,42 -2,46 56,65 0,76 4,19 0,07 74,31 0,00 3,01 -5,30 0,00 52,59 0,38 3,76 0,02 75,37 0,00 3,00 -3,59 0,00 46,21 0,19 2,12 0,09 77,32 0,00 2,98 0,28 0,00 38,29 0,08 0,05 0,34 78,34 0,00

^{(*1):} Bei Schall03-Elementen wird der normgerechte Pegel über ein Iterationsverfahren mit fortlaufender Halbierung der Teilstücke ermittelt.

Die Iteration endet, wenn der Unterschied weniger als 0.1 dB beträgt.

Das vorletzte Ergebnis ist maßgebend und wird hier als Summenpegel (Zyklus ...) dargestellt.

Die Zwischenergebnisse in dieser Liste stammen aber aus dem ersten Iterationsschritt: Zyklus 1.

3.2 Prognose Straßenverkehr - Auszug hier für die IP 5 bis IP5**

Lange Liste - Elemente zusammengefasst

Lange Liste - Elemente zusammengefasst	

Immissionsberechnung	Beurteilung nach DIN 18005	*
Straßenverkehr	Einstellung: Referenzeinstellung	Tag (6h-22h)
		0,1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y/m	IPKT: z /m	(*1)	Lr(IP) /dB(A)
IPkt005	IO5	33304106,82	5932486,21	62,155	Zyklus	2 52,34

RLS-90		Lr = L* +	r = L* + Ds + DBM + Dreft - Dz + Dlang mit L* = Lm,E+10lg(Länge)+K									
Element	Bezeichnung	L*	Abstand	Ds	dh	hm	DBM	Dz	Dz*	DRefl	Dlang	Lr
		/dB(A)		/dB			/dB	/dB	/dB	/dB	/dB	/dB(A)
STRb003	Straße L17 Süd	96,93		-40,00			-4,59	4,40	4,59	0,00	0,00	52,03
STRb002	Straße L17 Ortsdurch	88,93		-43,80			-4,64	10,76	10,76	0,00	0,00	38,29
STRb001	Straße L17 Nord	96,40		-54,68			-4,74	3,65	4,74	0,00	0,00	36,95

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z/m	Lr(IP) /dB(A)
IPkt010	IO5*	33304106,82	5932486,21	63,655	52,67

RLS-90		Lr = L* +	Lr = L* + Ds + DBM + Drefl - Dz + Dlang mit L* = Lm,E+10lg(Länge)+K									
Element	Bezeichnung	L*	Abstand	Ds	dh	hm	DBM	Dz	Dz*	DRefl	Dlang	L
		/dB(A)		/dB			/dB	/dB	/dB	/dB	/dB	/dB(A)
STRb003	Straße L17 Süd	96,93		-39,79			-4,40	3,26	4,40	0,00	0,00	52,34
STRb002	Straße L17 Ortsdurch	88,93		-43,45			-4,55	9,81	9,81	0,00	0,00	39,23
STRb001	Straße L17 Nord	96,40		-54,67			-4,71	3,40	4,71	0,00	0,00	36,98

IPKT	IPKT: Bezeichnung	IPKT: x/m	IPKT: y/m	IPKT: z/m	Lr(IP) /dB(A)
IPkt015	IO5**	33304106,82	5932486,21	66,455	53,17

RLS-90		Lr = L* +	Ds + DBM	+ Drefl -	Dz + Dlang	mit L*	= Lm,E+1	Olg(Länge	e)+K			
Element	Bezeichnung	L*	Abstand	Ds	dh	hm	DBM	Dz	Dz*	DRefl	Dlang	L
		/dB(A)		/dB			/dB	/dB	/dB	/dB	/dB	/dB(A)
STRb003	Straße L17 Süd	95,78		-38,35			-4,03	1,24	4,03	0,00	0,00	52,81
STRb002	Straße L17 Ortsdurch	88,93		-42,66			-4,35	8,42	8,42	0,00	0,00	40,62
STRb001	Straße L17 Nord	96,40		-54,68			-4,66	3,39	4,66	0,00	0,00	37,00

(*1): Bei Schall03-Elementen wird der normgerechte Pegel über ein Iterationsverfahren mit fortlaufender Halbierung der Teilstücke ermittelt.

Die Iteration endet, wenn der Unterschied weniger als 0.1 dB beträgt.

Das vorletzte Ergebnis ist maßgebend und wird hier als Summenpegel (Zyklus ...) dargestellt.

Die Zwischenergebnisse in dieser Liste stammen aber aus dem ersten Iterationsschritt: Zyklus 1.

Lange Liste - Elemente zusammengefasst

Immissionsberechnung	Beurteilung nach DIN 18005	
Straßenverkehr	Einstellung: Referenzeinstellung	Nacht (22h-6h)

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z/m	(*1)	Lr(IP) /dB(A)
IPkt005	IO5	33304106,82	5932486,21	62,155	Zyklus 2	2 42,02

RLS-90		Lr = L* +	Ds + DBM	1 + Dreft -	Dz + Dlan	g mit L*	= Lm,E+	10lg(Läng	e)+K			
Element	Bezeichnung	L*	Abstand	Ds	dh	hm	DBM	Dz	Dz*	DRefl	Dlang	L
		/dB(A)		/dB			/dB	/dB	/dB	/dB	/dB	/dB(A)
STRb003	Straße L17 Süd	86,62		-40,00			-4,59	4,40	4,59	0,00	0,00	41,72
STRb002	Straße L17 Ortsdurch	78,35		-43,80			-4,64	10,76	10,76	0,00	0,00	27,71
STRb001	Straße L17 Nord	86,03		-54,68			-4,74	3,65	4,74	0,00	0,00	26,59

IPKT	IPKT: Bezeichnung	IPKT: x/m	IPKT: y /m	IPKT: z/m	Lr(IP) /dB(A)
IPkt010	IO5*	33304106,82	5932486,21	63,655	42,34

RLS-90		Lr = L* +	= L* + Ds + DBM + Drefl - Dz + Dlang mit L* = Lm,E+10lg(Länge)+K									
Element	Bezeichnung	L*	Abstand	Ds	dh	hm	DBM	Dz	Dz*	DRefl	Dlang	L
		/dB(A)		/dB			/dB	/dB	/dB	/dB	/dB	/dB(A)
STRb003	Straße L17 Süd	86,62		-39,79			-4,40	3,26	4,40	0,00	0,00	42,03
STRb002	Straße L17 Ortsdurch	78,35		-43,45			-4,55	9,81	9,81	0,00	0,00	28,65
STRb001	Straße L17 Nord	86,03		-54,67			-4,71	3,40	4,71	0,00	0,00	26,62

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z/m	Lr(IP) /dB(A)
IPkt015	IO5**	33304106,82	5932486,21	66,455	42,84

RLS-90		Lr = L* +	= L* + Ds + DBM + Dreft - Dz + Dlang mit L* = Lm,E+10lg(Länge)+K									
Element	Bezeichnung	r.	Abstand	Ds	dh	hm	DBM	Dz	Dz*	DRefl	Dlang	L
		/dB(A)		/dB			/dB	/dB	/dB	/dB	/dB	/dB(A)
STRb003	Straße L17 Süd	85,47		-38,35			-4,03	1,24	4,03	0,00	0,00	42,50
STRb002	Straße L17 Ortsdurch	78,35		-42,66			-4,35	8,42	8,42	0,00	0,00	30,04
STRb001	Straße L17 Nord	86,03		-54,68			-4,66	3,39	4,66	0,00	0,00	26,63

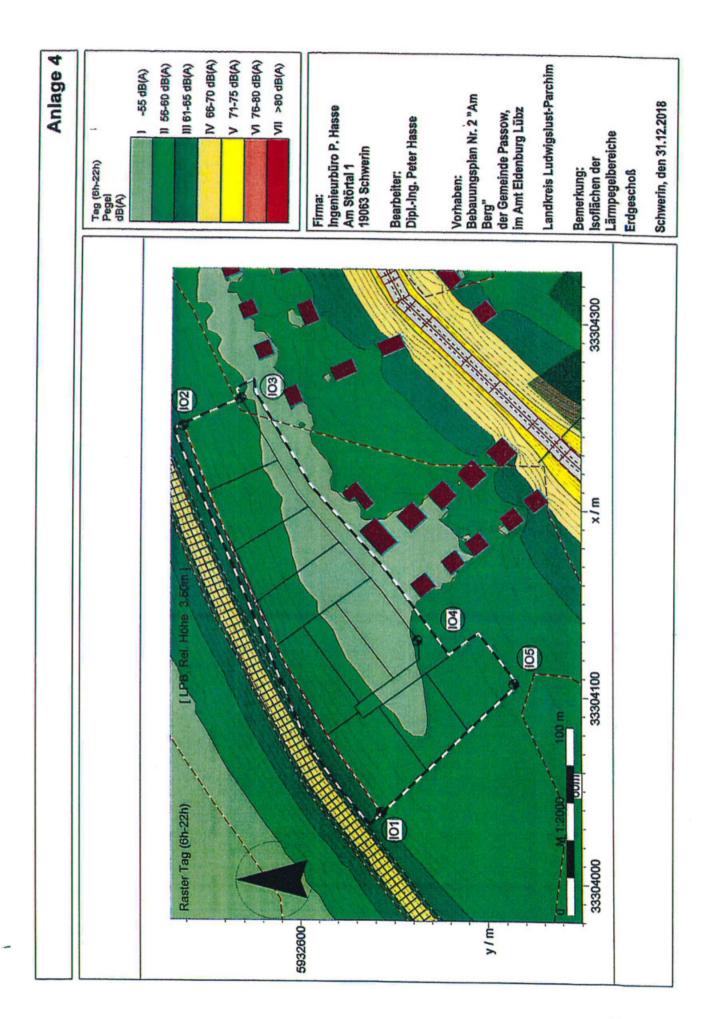
(*1): Bei Schall03-Elementen wird der normgerechte Pegel über ein Iterationsverfahren mit fortlaufender Halbierung der Teilstücke ermittelt.

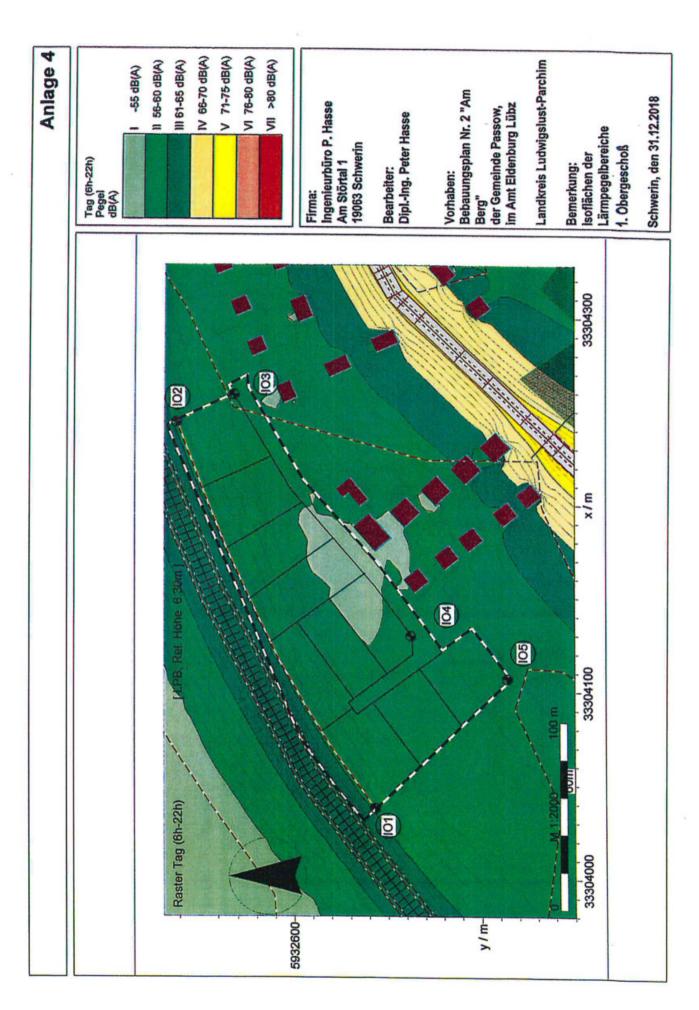
Die Iteration endet, wenn der Unterschied weniger als 0.1 dB beträgt.

Das vorletzte Ergebnis ist maßgebend und wird hier als Summenpegel (Zyklus ...) dargestellt.

Die Zwischenergebnisse in dieser Liste stammen aber aus dem ersten Iterationsschritt: Zyklus 1.

3.3 Verzeichnis der Formelzeichen


Lang	e Liste - Legende	MATERIAL SECTION AND ADDRESS OF THE PARTY OF	
Geme	einsame Felder		
1	Nr.	-	Laufende Nummer der Daten-Zeile (ohne Überschriften usw.)
2	IPkt	-	Aus Typ und Elementnummer automatisch erzeugter Name des Immissionspunktes
3	IPkt: Bezeichnung	-	Vom Anwender vergebene Bezeichnung des Immissionspunktes
4	IPkt: IP_x	/m	x-Koordinate des Immissionspunktes
5	IPkt: IP_y	/m	y-Koordinate des Immissionspunktes
6	IPkt: IP•z	/m	z-Koordinate des Immissionspunktes
7	Quelle	-	Aus Typ und Elementnummer automatisch erzeugter Name der Quelle
8	Bezeichnung	-	Vom Anwender vergebene Bezeichnung der Schallquelle
9	Ab.		Nummer des Elementabschnitts (Linienabschnitt oder Teildreieck)
10	Tlg.	-	Nummer des Teilstückes/Teildreiecks, das infolge von Abstandskriterium oder Projektion entstanden ist
11	QP_x	/m	x-Koordinate der(virtuellen) Punktquelle
12	QP_y	/m	y-Koordinate der(virtuellen) Punktquelle
13	QP_z	/m	z-Koordinate der(virtuellen) Punktquelle
14	Länge	/m	Länge des Teilstücks der Quelle
15 I	Fläche	/m²	Fläche des Teilstücks der Quelle
16	RO	-	Reflexionsordnung: 0= Direktschall, 1= 1.Reflexion, 2= 2. und höhere Reflexionen
17	RAb	-	Nummer des Elementabschnitts des Reflektors
18	Reflektor	-	Aus Typ und Elementnummer automatisch erzeugter Name des reflektierenden Elements
19 /	Abstand	/m	Abstand des Immissionspunktes zur (virtuellen) Punktquelle
20 F	Frq	/Hz	Frequenz der Emission
21 8	s_Senkr.	/m	senkr. Abstand des Immissionspunktes zu einer Linienquelle in der xy-Ebene
22	Lw,i	/dB(A)	A-bewerteter Emissionswert für die Teilquelle in dB
23	L_Korr	/dB	Korrektur wg. Teilstücklänge bzw. Teilfläche
201 l	Lr,i	/dB(A)	A-bewerteter beurteilter Immissionswert für die Teilquelle
202 l	Lr(Ab)	/dB(A)	A-bewerteter beurteilter Immissionswert für den Abschnitt der Quelle
203	Lr(SQ)	/dB(A)	A-bewerteter beurteilter Immissionswert für die Quelle
204	Lr(EK)	/dB(A)	A-bewerteter beurteilter Immissionswert für alle Quellen der Elementklasse
205	Lr(IP)	/dB(A)	A-bewerteter beurteilter Immissionswert am Immissionsort


18005 Teil 1, Ma	ai 1987 - Sc	hallschutz im Städtebau (Berechnungsverfahren)	
Lw + LK - Ls - L	g + Lrefl - B	onus	
AM	/dB	Gesamtes Ausbreitungsmaß = Differenz zwischen Emission und Immission	
Ls	/dB	Differenz zwischen Schallleistungspegel einer Punktschallquelle und	
		Mittelungspegel im Abstand s bei ungehinderter Schallausbreitung	
z	/m	Schirmwert (kürzester Umweg des Schalls über oder um Hindernis herum)	
Lz	/dB	Pegelminderung durch Hindernisse	
Lg	/dB	Pegelminderung durch Gehölz und Bebauung	
Lrefl	/dB	Mehrfachreflexion bei beiderseits geschlossenener Bebauung nach 6.3	
Bonus	/dB	Schienenbonus	
	Lw + LK - Ls - L AM Ls z Lz Lg Lrefi	Lw + LK - Ls - Lg + Lrefl - B AM	Ls /dB Differenz zwischen Schallleistungspegel einer Punktschallquelle und Mittelungspegel im Abstand s bei ungehinderter Schallausbreitung z /m Schirmwert (kürzester Umweg des Schalls über oder um Hindernis herum) Lz /dB Pegelminderung durch Hindernisse Lg /dB Pegelminderung durch Gehölz und Bebauung Lrefl /dB Mehrfachreflexion bei beiderseits geschlossenener Bebauung nach 6.3

			schutz an Straßen, Ausgabe 1990	
Lr,i=	= L* + Ds + DBN	M + Drefl - Dz	$mit L^* = Lm, E + 10lg(I) + K$	
101	K_Ampel	/dB(A)	Zuschlag für erhöhte Störwirkung von Lichtzeichengeregelten Kreuzungen und Einmündungen	
102	Dstg	/dB(A)	Korrektur für Steigungen und Gefälle	
103	AM	/dB(A)	Gesamtes Ausbreitungsmaß = Differenz zwischen Emission und Immission	
104	Spur	-	Bezeichnung der Fahrspur: nah oder fern	
105	Ds	/dB(A)	Pegeländerung durch unterschiedliche Abstände	
106	DH	/m	Höhendifferenz zwischen Emissions- und Immissionsort	
107	Hm	/m	Mittlerer Abstand zwischen dem Grund und der Verbindungslinie	
108	DBM	/dB(A)	Pegeländerung durch Boden- und Meteorologiedämpfung	
109	Dz	/dB(A)	Abschirmmaß eines Lärmschirmes	
110	DMRefl	/dB(A)	Pegelerhöhung durch Mehrfachreflexion	

111 Dg	/dB(A)	Pegelminderung durch Gehölz und Bebauung (nur optional)	
_	_		

Scha	all 03 - Richtlini	e zur Berech	nung von Schallimmissionen von Schienenwegen	-
LfT =	= Lw + KS + Do	omega + DI -	Adiv - Aatm - Agr - Abar	
101	Ks	/dB	Schienenbonus Ks	
102	AM	/dB	Gesamtes Ausbreitungsmaß = Differenz zwischen Emission und Immission	
103	Domega	/dB	Raumwinkelmaß	
104	DI	/dB	Richtwirkungsmaß	
105	Adiv	/dB	Abstandsmaß	
106	Aatm	/dB	Luftabsorptionsmaß	
107	Agr	/dB	Bodendämpfungsmaß in dB	
108	Abar	/dB	Einfügungsdämpfungsmaß eines Schallschirms	
109	Drefl	/dB	Drefl (Gleichung 20) - reflekt. Wände im Abstand <=5m	
110	Dz1	/dB	Abschirmmaß Dz ohne Korrektur. Vertikal	
111	Dz2	/dB	Abschirmmaß Dz ohne Korrektur. Horizontal 1	
112	Dz3	/dB	Abschirmmaß Dz ohne Korrektur, Horizontal 2	

Vorhaben: Bebauungsplan Nr. 2 "Am Berg" der Gemeinde Passow

Standort: Landkreis Ludwigslust - Parchim

Lfd Nr.	Norm, Vorschriften und, Literatur	Bezeichnung
1	DIN 4109-1: 2016-07	Schallschutz im Hochbau - Teil 1 Mindstanforderungen
2	DIN 4109-2: 2016-07, Beibl. 1: 1989-11	Schallschutz im HochbauTeil 2 Rechnerische Nachweise der Erfüllung der Anforderungen
3	DIN ISO 9613-2: 1999-10	Akustik - Dämpfung des Schalls bei der Ausbreitung im Freien - Teil 2: Allgemeines Berechnungsverfahren (ISO 9613-2:1996
4	DIN 18005, 1: 2002 -07	Schallschutz im Städtebau – Teil 1:Grundlagen und Hinweise für die Planung
5	Beiblatt zu DIN 18005, T1: 1987 - 05	Wie vor; Schalltechnische Orientierungswerte für die städtebauliche Planung
6	VDI 2719: 1987-08	Schalldämmung von Fenstern und deren Zusatzeinrichtungen
7	VDI 2714 : 01-1988	Schallausbreitung im Freien
8	VDI 3745: Mai 1993	Beurteilung von Schießgeräuschimmissionen
9	RLS-90	Richtlinien für den Lärmschutz an Straßen, 1990
10	PLS 2007	Parkplatzlärmstudie, 6. Auflage, Bayrisches Landesamt 2007
11	Schall 03 (2012)	Berechnung des Beurteilungspegels für Schienenweg
12	TA-Lärm (98)	Technische Anleitung zum Schutz gegen Lärm, vom 26. August 1998 Sechste Allgemeine Verwaltungsvorschrift zum BlmSchG
13	BauNVO	Baunutzungsverordnung in der Fassung und Bekanntmachung vom 20.09.2013